Material Parameter Identification of Elastoplastic Constitutive Models Using Machine Learning Approaches

AuthID
P-00X-DV4
3
Author(s)
Bastos, N
·
Prates, P
·
2
Editor(es)
Vincze,G;Barlat,F
Tipo de Documento
Proceedings Paper
Year published
2022
Publicado
in Key Engineering Materials, ISSN: 1013-9826
Volume: 926 KEM, Páginas: 2193-2200
Conference
25Th International Conference on Material Forming, Esaform 2022, Date: 27 April 2022 through 29 April 2022
Indexing
Publication Identifiers
SCOPUS: 2-s2.0-85140465229
Source Identifiers
ISSN: 1013-9826
Export Publication Metadata
Info
At this moment we don't have any links to full text documens.