1
TÍTULO: Multi-source deep transfer learning for cross-sensor biometrics  Full Text
AUTORES: Kandaswamy, C ; Monteiro, JC ; Silva, LM ; Cardoso, JS ;
PUBLICAÇÃO: 2017, FONTE: NEURAL COMPUTING & APPLICATIONS, VOLUME: 28, NÚMERO: 9
INDEXADO EM: Scopus WOS DBLP CrossRef: 7
NO MEU: ORCID
2
TÍTULO: Speedup of deep learning ensembles for semantic segmentation using a model compression technique  Full Text
AUTORES: Andrew Holliday; Mohammadamin Barekatain; Johannes Laurmaa; Chetak Kandaswamy ; Helmut Prendinger;
PUBLICAÇÃO: 2017, FONTE: COMPUTER VISION AND IMAGE UNDERSTANDING, VOLUME: 164
INDEXADO EM: WOS CrossRef
NO MEU: ORCID
3
TÍTULO: High-Content Analysis of Breast Cancer Using Single-Cell Deep Transfer Learning
AUTORES: Chetak Kandaswamy ; Luis M Silva ; Luis A Alexandre; Jorge M Santos;
PUBLICAÇÃO: 2016, FONTE: JOURNAL OF BIOMOLECULAR SCREENING, VOLUME: 21, NÚMERO: 3
INDEXADO EM: Scopus WOS CrossRef: 17
NO MEU: ORCID
4
TÍTULO: Improving deep neural network performance by reusing features trained with transductive transference
AUTORES: Kandaswamy, C ; Silva, LM ; Alexandre, LA; Santos, JM; De Sá, JM;
PUBLICAÇÃO: 2014, FONTE: 24th International Conference on Artificial Neural Networks, ICANN 2014 in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), VOLUME: 8681 LNCS
INDEXADO EM: Scopus CrossRef: 10
NO MEU: ORCID