DMFD: Non-Intrusive Dependency Inference and Flow Ratio Model for Performance Anomaly Detection in Multi-Tier Cloud Applications

AuthID
P-00R-37M
3
Author(s)
Kim, H
6
Editor(es)
Elisa Bertino; Carl K. Chang; Peter Chen; Ernesto Damiani; Michael Goul; Katsunori Oyama
Tipo de Documento
Proceedings Paper
Year published
2019
Publicado
in 2019 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (IEEE CLOUD 2019) in IEEE International Conference on Cloud Computing, ISSN: 2159-6182
Volume: 2019-July, Páginas: 164-173 (10)
Conference
12Th Ieee International Conference on Cloud Computing (Ieee Cloud) Held as Part of Ieee World Congress on Services (Ieee Services), Date: JUL 08-13, 2019, Location: MIlan, ITALY, Patrocinadores: IEEE, IEEE Comp Soc, CCF TCSC
Indexing
Publication Identifiers
DBLP: conf/IEEEcloud/FuPK19
SCOPUS: 2-s2.0-85072323339
Wos: WOS:000556208000023
Source Identifiers
ISSN: 2159-6182
Export Publication Metadata
Info
At this moment we don't have any links to full text documens.